(x^2-32x+252)=-(2x-34)-x+20

Simple and best practice solution for (x^2-32x+252)=-(2x-34)-x+20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2-32x+252)=-(2x-34)-x+20 equation:



(x^2-32x+252)=-(2x-34)-x+20
We move all terms to the left:
(x^2-32x+252)-(-(2x-34)-x+20)=0
We get rid of parentheses
x^2-32x-(-(2x-34)-x+20)+252=0
We calculate terms in parentheses: -(-(2x-34)-x+20), so:
-(2x-34)-x+20
We add all the numbers together, and all the variables
-1x-(2x-34)+20
We get rid of parentheses
-1x-2x+34+20
We add all the numbers together, and all the variables
-3x+54
Back to the equation:
-(-3x+54)
We get rid of parentheses
x^2-32x+3x-54+252=0
We add all the numbers together, and all the variables
x^2-29x+198=0
a = 1; b = -29; c = +198;
Δ = b2-4ac
Δ = -292-4·1·198
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-29)-7}{2*1}=\frac{22}{2} =11 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-29)+7}{2*1}=\frac{36}{2} =18 $

See similar equations:

| -0.6x=0.4x-19 | | 25x+65=15x+80 | | 7-3n/6+4=5(2n+1) | | 2/3x-2+1/6=5/12 | | 2x-8=-2x+4 | | -6=c(2) | | 180=42+(2x-8) | | 5+7x+3x+1=1 | | -6x+8+3x+7=18 | | 17x+3x-10x-6x-2x=14 | | 90=x+(10+4x) | | 7-(3x+2)=4 | | 16x-x-12x=18 | | 4x+4+6x-20+90=180 | | 4(x-6)-12x=16 | | 0.75x-9=2 | | 180=29+(6x+1) | | 3x+2x+x+4x=20 | | 8x/12-5x/12=3x/12 | | 4x+4+6x-20=90 | | e/4-2=25 | | 18x-x+4x-16x+2x=7 | | 90=84=(x+3) | | 180=123+x | | 6(2x3)=9x+12+3x | | 6r-1=6r | | 16x-13x=12 | | 6(5/6n-2/3)=-9 | | 5x+10=540 | | 6(5/6x-2/3)=-9 | | 8x-25+8x-25-(9x+34)=0 | | 2v+28=16v |

Equations solver categories